
INTRODUCTION

ESTROGEN, THE FEMALE SEX HORMONE, has been found to
exert an atheroprotective effect through mechanisms

that are not fully elucidated (46). Estrogen deficiency in rats
results in an increase in vascular free radical production and
enhanced angiotensin II-induced vasoconstriction, leading to
endothelial dysfunction (44). Several studies have demon-
strated an antioxidant effect of estrogens in vivo and in vitro
(2, 37, 38, 43, 47). Other studies have suggested both a
prooxidant and an antioxidant role for estrogens (23, 26, 42).
An attenuation of reactive oxygen species (ROS)-induced
damage may partly explain the effects of this hormone on

vasculature (46). Antioxidant actions of this hormone have
also been proposed to explain its protective effect on neu-
ronal cells (4, 14). Finally, estrogen replacement has been hy-
pothesized to confer protection against ROS-related diseases
such as Alzheimer’s and Parkinson’s diseases (15).

Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is a
potent source of free radicals, and has been pathogenetically
implicated in various disorders, such as ischemia–reperfusion,
radiation injury, and the adult respiratorydistress syndrome
(ARDS) (27). XDH/XO, a purine catabolizing enzyme sys-
tem, catalyzes the oxidation of hypoxanthineto xanthine and
xanthine to uric acid (17). Under certain conditions, XDH/XO
can generate superoxide and hydrogen peroxide when it utilizes
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molecular oxygen (O2, the preferred electron acceptor for the
xanthine oxidase form) instead of NAD+ (the preferred elec-
tron acceptor for the xanthine dehydrogenase form) (1). Our
laboratory has demonstrated an up-regulation and activation
of XDH/XO in response to hypoxia in vitro and in vivo (18,
19, 24, 49).

The effects of estradiol on the XDH/XO system have not
been examined. We aimed to study the modulatory effects
of 17b-estradiol and its nonreceptor binding stereoisomer, 
17a-estradiol, on the hypoxia-induced up-regulation of XDH/
XO in cultured rat pulmonary microvascular endothelial cells
(RPMEC). Our findings indicate that estradiol can block
the activation of XDH/XO by hypoxia. The fact that 17a-
estradiol also blocked the hypoxia-induced activation of
XDH/XO suggests that this nonestrogenic compound might
have antioxidant properties.

MATERIALS AND METHODS

Materials and reagents

RPMI 1640, phosphate-free Dulbecco’s modified Eagle’s
medium, fetal bovine serum, dialyzed fetal bovine serum,
penicillin G potassium, streptomycin, fungizone, and gluta-
mine were obtained from Invitrogen–Life Technologies
(Carlsbad, CA, U.S.A.). EDTA, Tris, 17b-estradiol, 17a-
estradiol, ICI 182,780, and dithiothreitol were from Sigma
(St. Louis, MO, U.S.A.).

Cell culture and exposure to hypoxia

RPMEC were a gift from Dr. Una Ryan (Avant Im-
munotherapeutics, Needham, MA, U.S.A.) and were cultured
as previously described (12). For estradiol exposure, 1 mM
stock solutions of 17a- and 17b-estradiol were made in
ethanol. Required dilutions were performed in ethanol. Cor-
responding concentrations of ethanol were used in control
cells. For hypoxic exposure, cells were placed in humidified
airtight incubation chambers (Billups-Rothenberg, Del Mar,
CA, U.S.A.) and gassed with 3% O2, 5% CO2, and balance
N2. The hypoxic chambers were kept in a 37°C incubator for
the duration of the experiment. Normoxic cells were kept in a
tissue culture incubator maintained at 5% CO2 and 37°C.

Xanthine oxidase activity measurements

The activities of xanthine dehydrogenase and xanthine ox-
idase in response to different treatments were assayed using a
slight modification of a fluorimetric assay that measures both
xanthine oxidase and xanthine dehydrogenase activities (3).
The principle of the assay involves the conversion of pterin
into the fluorescent product isoxanthopterin. The rate of
product formation with oxygen as the electron acceptor rep-
resents the activity of xanthine oxidase, and the combined ac-
tivities of xanthine oxidase and xanthine dehydrogenase are
measured with methylene blue as the electron acceptor. In
brief, cells were washed once in phosphate-buffered saline,
then scraped off the plate in 50 mM sodium phosphate (pH
7.4), 1.5 mg/ml dithiothreitol, and 13 Protease Inhibitor
Cocktail 3 (Calbiochem, San Diego, CA, U.S.A.). The cells
were sonicated for 5 s, and centrifuged at 10,000 g for 5 min.

The supernatant was collected and assayed immediately, or
stored at 280°C overnight.

XDH/XO promoter activity in endothelial cells

A DNA construct containing a 6,000-bp fragment of the
rat XDH/XO promoter driving the expression of f irefly lu-
ciferase was introduced into RPMEC by electroporation. As
transient transfections of this construct were highly variable,
and precluded consistent quantitative assessment of the effect
of different treatments on promoter activity, we generated sta-
bly transfected cells. The stable transfectants were produced
by cotransfection of the promoter–reporter construct with
pcDNA3.1 (1:10 DNA ratio), which conveys to cells resis-
tance to Geneticin. One day after cotransfection, the cells
were treated with Geneticin. A week later, colonies formed
by Geneticin-resistant cells were individually trypsinized,
passed into 96-well dishes, and maintained in Geneticin-
containing media. After two more passages, 35-mm dishes
derived from each colony were assayed for luciferase activity.
Out of several clones screened, two clones that express a sig-
nificant baseline luciferase activity were obtained. These
clones were further expanded, and used to study the effect of
hypoxia and 17a- or 17b-estradiol treatment on the XDH/XO
promoter activity. The firefly luciferase activity was assayed
using a kit from Promega (Madison, WI) according to the
manufacturer’s instructions. In brief, cells were lysed and the
substrate (beetle luciferin) was added to the lysate. Next,
chemiluminescence was measured using a luminometer.

Sodium dodecyl sulfate–polyacrylamide gel
electrophoresis (SDS-PAGE), western blotting, and
immunoprecipitation

Aliquots from the cell lysates prepared as described above
were assayed for protein using the Bradford protein assay (6)
and then diluted with 23 Laemmli loading buffer for SDS-
PAGE (25). Equal amounts of protein were then loaded in
each well of 4–20%Tris/glycine gels. After electrophoresis
for 90 min at 125 V constantvoltage, the gel was blotted onto
an Immobilon-P membrane by electrophoretictransfer at 25 V
constant voltage overnight. The membrane wasthen washed,
blocked with 5% milk, and probed with antibodiesagainst
xanthine oxidase (LabVision). The immunoreactive bands
were visualized using a secondary antibody conjugated to
horseradishperoxidase and a chemiluminescent substrate ac-
cording to the manufacturer’sinstructions (SuperSignal,
Pierce-Rockford, IL). The intensity of the bandswas quanti-
fied using a Molecular Dynamics densitometer and Image-
Quant software.

Statistical analysis

The values plotted in all figures are means, and the error
bars reflect the standard deviation from the mean. Statistical
analysis was carried out using SPSS (SPSS, Inc, Chicago, IL,
U.S.A.). Student’s t test was used to determine if differences
between control and estradiol-treated groups were statisti-
cally significant. Analysis of variance was used when more
than two groups were compared. Statistical significance was
considered at p < 0.05.
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RESULTS

Hypoxia increases XDH/XO enzymatic activity and
XDH/XO promoter activity in RPMEC

A significant (twofold, p < 0.0001) increase in XDH/XO
enzymatic activity occurred in response to a 24-h exposure to
hypoxia (Fig. 1A). This is consistent with our previous stud-
ies, which demonstrated an increase in XDH/XO activity
after exposure to hypoxia in vitro and in vivo (18, 19, 24, 49).
To determine if transcription contributed to the increase in
enzyme activity, we tested the effect of hypoxia on the
XDH/XO gene promoter. RPMEC were stably transfected
with DNA constructs containing 6,000 bp of the XDH/XO
gene promoter driving the expression of f irefly luciferase,
and then exposed to hypoxia for 24 h. The exposure of
RPMEC to hypoxia caused a significant (2.4-fold, p < 0.0001)
increase in XDH/XO promoter activity (Fig. 1B).

Hypoxia increases the expression of estrogen
receptor (ER) b, but not ERa in RPMEC

Many of the effects of estradiol are mediated via the two
known ERs, ERa and ERb. We used immunoblotting tech-
niques to detect the presence of either of these receptors in
RPMEC, and to study possible alterations after exposure to
hypoxia. Immunoblotting with specific antibodies against the
a or b forms of the protein failed to detect any ERa receptor
isoform in RPMEC. The ERb isoform protein was present in
normoxic cells and increased significantly in response to a
24-h exposure to hypoxia (Fig. 2).

17a- and 17b-estradiol attenuate hypoxia-induced
XDH/XO activity in RPMEC

To study the effect of estradiol on hypoxia-induced in-
crease in XDH/XO activity, RPMEC were exposed to differ-
ent concentrations of 17a- and 17b-estradiol prior to a 24-h
exposure to hypoxia. Both 17a-estradiol (Fig. 3A) and 17b-
estradiol (Fig. 3B) caused attenuation in hypoxia-induced in-

crease in XDH/XO activity. 17b-estradiol had no effect on
baseline XDH/XO activity. The attenuation was seen at all
doses tested (10210–1027 M), although the effect was not dose-
dependent (p < 0.05 for all tested doses of either estradiol).

17a- and 17b-estradiol do not inhibit XDH/XO
gene promoter

To determine if the attenuation of hypoxia-induced in-
crease in XDH/XO transcription was one of the underlying
mechanisms for the decrease in XDH/XO activity, we treated
XDH/XO promoter constructs with 17a- or 17b-estradiol be-
fore exposure to hypoxia for 24 h. Hypoxia caused an in-
crease in XDH/XO promoter activity. However, the presence
of estradiol, 17a- or 17b-, did not attenuate this increase,
suggesting that the effect of estradiol is occurring at a post-
transcriptional level (Fig. 4).

17b-Estradiol-induced modulation of XDH/XO
activity is not receptor mediated

To determine if the inhibitory effect of 17b-estradiol on
hypoxia was mediated through ERs, we repeated the experi-
ments in the presence of ICI 182,780 (10 µM), an ER antago-
nist. There was no change in the effect of 17b-estradiol on
XDH/XO activity with the addition of ICI 182,780 for the du-
ration of the experiment (Fig. 5). These results are consistent
with the fact that 17b-estradiol, which binds the ER, and
17a-estradiol, which does not bind the ER, both resulted in a
similar blockade of the activation of XDH/XO by hypoxia.

DISCUSSION

In this study, we have demonstrated that both 17a- and
17b-estradiol cause an attenuation of the expected increase in
XDH/XO activity in response to hypoxia. This effect does not
appear to be mediated by the traditional ERs. Our results also
demonstrate that hypoxia can induce the expression of ERb.
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FIG. 1. Hypoxia causes up-regulation of XDH/XO in RPMEC. (A) Exposing RPMEC to hypoxia for 24 h causes a twofold
increase in total (XDH/XO) activity. *p < 0.05 versus normoxia. (B) Hypoxia causes an increase in XDH/XO promoter activity.
To study the changes in XDH/XO promoter activity, RPMEC were transfected with 6,000-bp DNA construct of rat XDH/XO pro-
moter driving the expression of firefly luciferase. The resulting luminescence was measured using luciferase assay and used as an
indicator of XDH/XO promoter activity. Exposure of these cells to hypoxia for 24 h causes a 2.4-fold increase in XDH/XO pro-
moter activity. *p < 0.05 versus normoxia.
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Estrogens have been used as therapeutic agents for a vari-
ety of medical disorders. Postmenopausal estrogen replace-
ment is associated with a decrease in the risk of neurological
disorders such as Alzheimer’s and Parkinson’s diseases (15,
48). Experimental evidence suggests a possible role for estro-
gens in acute ischemic central nervous system injury (35).
Recent studies support a role for these compounds in attenua-
tion of experimentally induced pulmonary hypertension in
animal models, as well as treatment of perinatal pulmonary
hypertension (13, 31, 36). Diverse mechanisms have been
proposed to explain the salutary effects of estrogen. Based on
our observations, we believe that modulation of the XDH/XO
enzyme system may play a role in the therapeutic properties
of estrogen.

XDH/XO is a complex molybdoflavoenzyme that is the ter-
minal enzyme of human purine catabolism (17). XDH/XO is
believed to be involved in the pathogenesis of diseases such
as systemic hypertension (29), pulmonary hypertension (20,
41), ischemia–reperfusion injury (16, 33), and ARDS (34).
Therefore, factors that modulate the metabolism and activity

of XDH/XO may play a role in the pathogenesis or therapy of
these disorders. Work from our laboratory and others have
shown that hypoxia up-regulates XDH/XO at transcriptional,
translational, as well as posttranslational levels (17). This en-
zyme, and particularly the oxidase form, can generate ROS
such as superoxide and hydrogen peroxide, which can cause
direct cell injury (17). Alternatively, xanthine oxidase-
derived superoxide can react with nitric oxide to form perox-
ynitrite, a potent oxidant.

Hypoxia is a common physiological response to various
cardiac, pulmonary, and vascular disorders, and an increase
in XDH/XO may be one of the plausible mechanisms through
which it exerts its deleterious effects. This hypothesis is sup-
ported by the experimental evidence that hypoxia–induced in-
crease in XDH/XO can contribute to ischemia–reperfusion
injury (21). Increased plasma levels of XDH/XO have been
reported in patients subjected to ischemia–reperfusion in-
duced by aortic cross-clamp procedures (40) or liver trans-
plantation (32). Further experimental support for the patho-
genetic role of XDH/XO in hypoxic conditions comes from
the observation that perfusion of isolated rat lung with the ef-
fluent of ischemic–reperfused liver causes pulmonary mi-
crovascular permeability, a phenomenon that is inhibited by
the XDH/XO inhibitor allopurinol (45). In addition, antioxi-
dants and free radical scavengers alleviate XDH/XO-induced
acute lung injury (9). We speculate that alleviation of oxida-
tive stress through inhibition of hypoxia-induced activation of
XDH/XO may be partly responsible for the suggested protec-
tive, as well as a therapeutic, role of estrogens in these and
other disorders characterized by hypoxia. Furthermore, inhi-
bition of XDH/XO improves endothelial dysfunction in hy-
percholesterolemic rabbits (11), as well as in human subjects
with type 2 diabetes and mild hypertension (8).

The modulation of XDH/XO by both 17b- and 17a-estra-
diol is consistent with earlier studies that demonstrated an-
tioxidant effects of both these stereoisomers (5, 7, 10). The
antioxidative effect is independent of the estrogenic proper-
ties of the compound (28). Many actions of estrogen are prob-
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FIG. 2. Effect of hypoxia on the ER. RPMEC were exposed
to hypoxia for 24 h, and the ER protein level was determined
by immunoblotting with specific antibodies against the a or b
forms of the protein. Whereas the ERa receptor isoform was
not detectable in RPMEC, the ERb isoform protein was pres-
ent in normoxic cells and significantly increased in response to
hypoxic exposure.

FIG. 3. 17a- and 17b-estradiol attenuate hypoxia-induced increase in XDH/XO activity. RPMEC were treated with differ-
ent concentrations of 17a- or 17b-estradiol prior to exposure to hypoxia or normoxia. All tested concentrations of either estradiol
(10210–1027 M) prevented the expected increase in XDH/XO activity after 24-h exposure to hypoxia. For clarity, results with the
two lowest concentrations are shown. There was no dose-response relationship between the concentration of estradiol and de-
crease in XDH/XO activity. *p < 0.05 versus normoxia. (A) Effect of 17a-estradiol on hypoxia-induced modulation of XDH/XO
activity in RPMEC. (B) Effect of 17b-estradiol on hypoxia-induced modulation of XDH/XO activity in RPMEC.

BA

http://www.liebertonline.com/action/showImage?doi=10.1089/152308603770380007&iName=master.img-003.jpg&w=196&h=133
http://www.liebertonline.com/action/showImage?doi=10.1089/152308603770380007&iName=master.img-004.jpg&w=199&h=139


ably mediated through at least two distinct ERs, ERa and
ERb (30). An increased expression of ERs has been demon-
strated with oxidative stress induced by hydrogen peroxide,
Fe2+, 2,29-azobis(2-amidinopropane) dihydrochloride, and acti-
vated macrophages (39). Similar to our study, the increase was
predominantly seen in ERb receptors, the major receptor type
in lung tissue, with a minimal increase in ERa (39). The physi-
ological significance of this up-regulation is not clear. The
presence of ERb receptors in lungs and on blood vessels (30),
and an up-regulation in response to hypoxia as shown in the
present study, suggest a possible role of this receptor in the
pathophysiology of disorders characterized by hypoxia.

Although it is possible that activation of the estradiol re-
ceptor by hypoxia may further stimulate certain effector path-
ways, a modulatory role for this receptor on the XDH/XO en-

zyme system is not borne out from our study. Our study
suggests that XDH/XO modulation by estradiol is either
receptor-independent or regulated by a yet unidentified ER.
This is consistent with prior studies documenting the protec-
tive role of estradiol independent of the receptors. For exam-
ple, Behl et al. demonstrated that the antioxidative protection
conferred by 17b-estradiol in neuronal cells was receptor-
independent (4). Similarly, Karas et al. showed that 17b-
estradiol markedly and equally inhibited vascular injury in
both wild-type and ERb-deficient mice (22), supporting a
non–receptor-dependent mechanism for this inhibition.

The mechanism(s) by which estrogens might affect post-
transcriptional activation of XDH/XO need further investiga-
tion and are beyond the scopeof the current study. However,
one can speculate one of several mechanisms. Posttrans-
lational modification of the protein, such as phosphorylation
(24) and sulfuration–desulfuration (17), are important in acti-
vation of the XDH/XO enzyme system. Estrogens may possi-
bly cause posttranslational modificationof XDH/XO by pre-
venting its phosphorylation or converting the protein to a
desulfo-form, thus inhibiting its activation. Recent work has
also suggested the importance of two kinases, p38 kinase and
casein kinase II (CK2) in mediating the phosphorylation of
XDH/XO in hypoxia (24). p38 is a stress-activated mitogen-
activated protein kinase that is activated in response to a vari-
ety of stimuli, including hypoxia. CK2, a ubiquitous protein,
may be important in the regulation of DNA synthesis and
replication, as well as cell growth. Further studies are required
to elucidate any possible involvement of kinases p38 and
CK2 in the estrogen regulation of XDH/XO activation by
hypoxia.

In conclusion, this study suggests that the protective prop-
erties of estrogen may be, at least in part, non–receptor-
mediated and involve the regulation of XDH/XO. As such,
these results may offer a new potential role for 17a-estradiol
in cardiovascular and neuronal protection, while avoiding the
hormonal effects seen with 17b-estradiol.
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